Orbital control of effective dimensionality: from spin-orbital fractionalization to confinement in the anisotropic ladder system CaCu(2)O(3).

نویسندگان

  • Valentina Bisogni
  • Krzysztof Wohlfeld
  • Satoshi Nishimoto
  • Claude Monney
  • Jan Trinckauf
  • Kejin Zhou
  • Roberto Kraus
  • Klaus Koepernik
  • Chinnathambi Sekar
  • Vladimir Strocov
  • Bernd Büchner
  • Thorsten Schmitt
  • Jeroen van den Brink
  • Jochen Geck
چکیده

Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

0 Superexchange in the quarter - filled two - leg ladder system NaV

A theory of superexchange in the mixed valent layer compound NaV2O5 is presented which provides a consistent description of exchange both in the disordered and charge ordered state. Starting from results of band structure calculations for NaV2O5 first an underlying electronic model for a ladder unit in the Trellis lattice is formulated. By using the molecular orbital representation for intra-ru...

متن کامل

High - field ESR studies of the quantum spin magnet

We report an electron spin resonance (ESR) study of the s = 1/2-Heisenberg pseudo-ladder magnet CaCu 2 O 3 in pulsed magnetic fields up to 40 T. At sub-Terahertz frequencies we observe an ESR signal originating from a small amount of uncompensated spins residing presumably at the imperfections of the strongly antiferromagnetically correlated host spin lattice. The data give evidence that these ...

متن کامل

Adaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 1DoF Gimbaled-Thruster

In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom (1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the disturban...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 114 9  شماره 

صفحات  -

تاریخ انتشار 2015